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Point Processing and Image Filtering

Jun-Yan Zhu
16-726 Learning-based Image Synthesis, Spring 2023
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Photo credit @ HaCohen et al., SIGGRAPH 2011




What is an Image?

* We can think of an image as a function, f, from R? to R:
— f( x, y) gives the intensity at position (x, y )

— Realistically, we expect the image only to be defined over a rectangle,
with a finite range.

A colorimage is just three functions pasted together. We can write
this as a “vector-valued” function:

(X, )

J(x,y)=|g(x,»)
 b(x,y)

Many slides are from Alyosha Efros, who also adopted some of them from other great people.



What is an Image?

Single channel grayscale image f( x, v )
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RGB image © A A. Efros BGR version

[ r(x,)
J(x, )= g(x,»)
| b(x, )

e Common bugs: a function call requires BGR (RGB), you feed RGB (BGR)

5@53  The same applies to display/visualization/save function.
 The crazy thing about deep network: the function calls still work. (e.g.,

recognize car and building in the image). 4




Problem: Dynamic Range

The real world is
| High dynamic range
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Long Exposure

10 High dynamic range 10°

10 10°

Picture I - I N N I N N B

0 to 255



Short Exposure

10 High dynamic range 10°

10 10°

Picture I - I N N I N N B

0 to 255



Basic Point Processing: Enhancement

ab
cd

FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

y = 3.0.4.0.and
5.0, respectively.
(Original image
for this example
courtesy of
NASA))
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Input gray level. r

c- f(x,y)Y

Power-law transformations

FIGURE 3.6 Plots
of the equation

s = cr” for
various values of
y(c =Tlinall
cases).



Basic Point Processing

FIGURE 3.3 Some L-1 | I I

basic gray-level
transformation
functions used for Negative
image
enhancement. wth root
3L /4 |
“ Log
E
-
i) nth power
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Basic Point Processing

ab

FIGURE 3.4

(a) Original
digital
mammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

a2

N egative FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation
given in

Eq. (3.2-2) with
c=1.




Contrast Stretching

Ouput gray level. s

(rZs SZ)

T(r) -

(r|,8|)

L/4 L/2 3L4 L-1
Input gray level. r

ab
ciid

FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of

Dr. Roger Heady,

Research School
of Biological
Sciences.
Australian
National
University,
Canberra,
Australia.)
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Learning Mapping functions



Image Histograms

I I 1

Dark image

T T T

Bright image

Low-contrast image

fihig

High-contrast image

oA niEgEinn [T

1.00

0.50

| |

128 192

Cumulative Histograms

T(f(xy))

ab

FIGURE 3.15 Fourbasic image types: dark, light. low contrast, high contrast. and their cor-
responding histograms. (Original image courtesy of Dr. Roger Heady. Research School
of Biological Sciences. Australian National University, Canberra. Australia.)
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Histogram Equalization

T

credit @ Zefram

Goal: match input image’s CDF to a
uniform distribution’s CDF.

CDE: cumulative distribution function
Parameters: a lookup table of 256 values

abc

FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (¢) Cor- 14
responding histograms




Color Transfer [Reinhard, et al, 2001]

Method: Adjust the mean and standard derivation for each channel

Erik Reinhard, Michael Ashikhnmin, Bruce Gooch, Peter Shirley, Color Transfer between
Images. IEEE Computer Graphics and Applications, 21(5), pp. 34—41. September 2001.

15


http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476

Limitations of Point Processing

Q: What happens if | reshuffle all pixels within
the image?

.. .I .III.I.T ...IIII . .: .-
.:' |I"..|-r' oy A By

A: It's histogram won’t change. No histogram
statistics will be affected...

16



Solution: only transfer across shared regions

Reference Input Matched regions Color mapping Result
d| | VA7

1

0.8¢

0.6

0.4

0.2f

NRDC: Non-Rigid Dense Correspondence with Applications for Image Enhancement
HaCohen et al., SIGGRAPH 2011.

A more general idea: transfer color from sky to sky, mountain to mountain, people to pedple



Limitations of Point Processing

* Q: What if | want to replace the sky in my
Image

* A: point processing cannot create new
structure/texture/object. But Why?

18
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Point Processing and Image Filtering

Jun-Yan Zhu
16-726 Learning-based Image Synthesis, Spring 2023
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Scene element

Sampling and Reconstruction

[llumination (energy)

,;7/ l\ source

v

Imaging system

(Internal) image plane

20



Sampled Representations

* How to store and compute with continuous functions?
e Common scheme for representation: samples
— write down the function’s values at many points

2
gl

[FvDFH fig.14.14b / Wolber



Reconstruction

 Making samples back into a continuous function
— for output (need realizable method)
— for analysis or processing (need mathematical method)
— amounts to “guessing” what the function did in between

l Reconstruction

[FVDFH fig.14.14b / Wolberg]

NN



1D Example: Audio

P uLUlilllh!I”‘
ow high
frequencies




Sampling in Digital Audio

 Recording: sound to analog to samples to disc

* Playback: disc to samples to analog to sound again

— how can we be sure we are filling in the gaps correctly?

i %&UAUGU%‘L —>» |A/D conw.

|l |l 1l| | | | |
@ L L B

D/A conv.

- bl — @
e ))



Sampling and Reconstruction

* Simple example: a sigh wave

AWAWAWAWAWA
VARVARVARVARVERV/




Undersampling

e Whatif we “missed” things between the samples?
e Simple example: undersampling a sine wave
— unsurprising result: information is lost

AWAWAWAWA
/\\/ \/% VARVARV/




Undersampling

e Whatif we “missed” things between the samples?
e Simple example: undersampling a sine wave
— unsurprising result: information is lost
— surprising result: indistinguishable from lower frequency

ANAN

N7 N



Undersampling

e Whatif we “missed” things between the samples?

e Simple example: undersampling a sine wave

unsurprising result: information is lost
surprising result: indistinguishable from lower frequency
also, was always indistinguishable from higher frequencies

aliasing: signals “traveling in disguise” as other frequencies

/\/\/\/\/\ /\/\/\f\/\/\

VATRVATRIATRVSAIRTAY




Aliasing in Videos

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDYRD

frame 0 frame 1 frame 2 frame 3 frame 4
il I I I .
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz
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Aliasing in Images

Disintegrating textures

30



Antialiasing
* What can we do about aliasing?

 Sample more often
— Join the Mega-Pixel craze of the photo industry
— But this can’t go on forever

* Make the signal less “wiggly”
— Get rid of some high frequencies
— Will loose information
— But it’s better than aliasing



Preventing Aliasing

Introduce lowpass filters:

— remove high frequencies leaving only safe, low frequencies

— choose lowest frequency in reconstruction (disambiguate)

‘:'[- ’ Iowpass filter
I A/D conv.

|l ll lll | | | |
@ o

D/A conv.

|l| I| | | |
i || e 10

Iowpass filter

| At —oq)
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Moving Average

* basic idea: define a new function by averaging over a sliding window

 asimple example to start off: smoothing

i




Moving Average

 (Can add weights to our moving average
 Weights [..,0,1,1,1,1,1,0,..] /5




Cross-correlation

e Let F betheimage, H be the kernel (of size 2k+1 x 2k+1), and G be the
output image

ko ok
Gli,j1= ) > Hluv]F[i+u,j+ ]

u=—kv=—k
* A “dot product” between local neighborhood and kernel for each pixel.

 Thisis called a cross-correlation operation:

G=HQF



2D Box Filter

1] 1| 1
1
— 1] 1] 1
O

1] 1| 1

Slide credit: David Lowe (UBC)



Image filtering

h[ 3 ] é

/1] gl

glm,n]=> hlk,1] flm+k,n+I]

k,l Credit: S. Seitz



Image filtering

/1] gl

h[ 3 ] é

O“ 10

glm,n]=> hlk,1] flm+k,n+I]

k,l

Credit: S. Seitz

38




Image filtering

gl.,.]

h[ 3 ] é

Credit: S. Seitz
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Image filtering

gl.,.]

h[ 3 ] é

20‘30\

Credit: S. Seitz

40




Image filtering

h[ 3 ] é

gl.,.]

Credit: S. Seitz



Image filtering

gl.,.]

h[ 3 ] é

20

30

30

Credit: S. Seitz
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Image filtering

gl.,.]

h[ 3 ] é

20

30

30

50

Credit: S. Seitz
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Image filtering

gl.,.]

glm,n]=> k1] flm+k,n+I]

k,l

Credit: S. Seitz
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2D Box Filter

What does it do? -,

* Replaces each pixel with an average
of its neighborhood 1 1 1

1

* Achieve smoothing effect (remove
sharp features) 111 | 1

Slide credit: David Lowe (UBC)



Linear filters: Examples

. 11
ST —_
11
Original Blur (with a mean

filter)

46



Practice with Linear Filters

000
010 ?
000

Original

47



Practice with Linear Filters

Original Filtered
(no change)

Source: D. Lowe
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Practice with Linear Filters

000
00 ?
000

Original

49



Practice with Linear Filters

Original Shifted left
By 1 pixel

Source: D. Lowe

50



Back to 2D Box Filter




Moving Average

 (Can add weights to our moving average
 Weights [..,0,1,1,1,1,1,0,..] /5




Weighted Moving Average

* bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]

il

)

ﬁ'N'w[*-w"l'l'l""HV"H




Gaussian filtering

*A Gaussian kernel gives less weight to pixels further

from the center of the window
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0 1
0 0 0 90 90 90 90 90 0 0 E
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
oo ]olo|o|lo]o[o|o]o
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
lx, vyl _
*This kernel is an approximation of a Gaussian function:
1 w2402
h(u,v) = e o2

Dol Slide by Steve Seitz



Mean vs. Gaussian Filtering

Slide by Steve Seitz
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Gaussian filtering

Weight contributions of neighboring pixels by nearness

0.003
0.013
0.022
0.013
0.003

0.013 0.022 0.013 0.003
0.059 0.097 0.059 0.013
0.097 0.159 0.097 0.022
0.059 0.097 0.059 0.013
0.013 0.022 0.013 0.003

5x5 0=1

Slide credit: Christopher Rasmussen



Gaussian Kernel

o =2 with 30 x 30 o =5 with 30 x 30
kernel kernel

Standard deviation o: determines extent of smoothing

Source: K. Grauman
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Gaussian filters

O =1 pixel

() =5 pixels

(O =10 pixels

(O =30 pixels

58



Choosing kernel width

Gaussian function has infinite support, but discrete filters use finite kernels

- T r r
e e e e e e e i e e

g= 9with 10x10 kernel g = 5 with 30x30 kernel

59
Source: K. Grauman



Cross-correlation vs. Convolution

k k
cross-correlation: Gli, 7] = Z Z Hluw,v]F[i + u, j + v]
u=—kv=—=k

G=HQ®F

A convolution operation is a cross-correlation where the filter is flipped both horizontally and
vertically before being applied to the image'

Gli, j] = Z Z Hlu,v]F[i —u,j — v]

u=—kov=-—%k

It is written:

(= Hx F

Convolution is commutative and associative

Slide by Steve Seitz



Convolution

7

Adapted from F. Durand

5@5 Different DL libraries handle it differently. Some flips; some not.
Be careful when you port Conv weights from one library to another.

Computer vision 101: most students fail to flip the kernel.




Convolution is nice!

Notation: b =c*a
Convolution is a multiplication-like operation

— Commutative:a*b =b xa

— Associative:a*x (bxc) = (a*xb) xc

— distributes over addition:ax (b+c) =a*xb+ax*c

— scalars factorout: aa *b = a * ab = a(a * b)

— identity: unitimpulsee=1...,0,0,1,0,0, ..:a*xe =a
Conceptually no distinction between filter and signal

Usefulness of associativity

— often apply several filters one after another: (((a * by) * by) * b;)
— this is equivalent to applying one filter: a * (b; * b, * bs)



Gaussian and Convolution

Removes “high-frequency” components from the image
(low-pass filter)

Convolution with self is another Gaussian

— Convolving twice with Gaussian kernel of width

= convolving once with kernel of width O

oV'2

Source: K. Grauman
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Throw away every other row and

column to create a 1/2 size image
- called image sub-sampling

Image sub-sampling

Slide by Steve Seitz
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12 1/4

Aliasing! What do we do?

(2x zoom)

1/8 (4x zoom)

Slide by Steve Seitz
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Sampling an image

Examples of GOOD sampling



Undersampling

Examples of BAD sampling -> Aliasing



Gaussian (lowpass) pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample

* Filter size should double for each %% size reduction. Why?
Slide by Steve Seitz
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Subsampling with Gaussian pre-filtering

G 1/8

Slide by Steve Seitz /70



ompreith...

1/2 1/4 (2x zoom) 1/8 (4x zoom)

71
Slide by Steve Seitz



More Gaussian pre-filtering
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Aliasing in Deep Learning

75.5 86.0 84.5 69.3

Baseline Anti-aliased Baseline Anti-aliased

More and more neural networks (e.g., StyleGAN2, StyleGAN3) use anti-aliasing layers
See Zhang. ICML 2019. “Making Convolutional Networks Shift-Invariant Again”

7




Aliasing in Deep Learning

Input 128x128 s O O - O
J.l = - Jg’ n ‘83
|

I
i
- - | |
.
Naive - .Q - .Q - (x

Subsampling o || = o

o n | I N || | I
Q Antialiased
Q Aliased

lanczos

bicubic

bilinear

Downsampled to 16x16

PIL

OpenCV /
MXNet

PyTorch

TensorFlow

antialias
= False
(default)

TensorFlow

antialias
= True

Ak

Many deep learning & computer vision
libraries fail to pre-filter images correctly
before downsampling. They use a fixed
filter size for different resizing ratios.

If you use them to resize your images,
your results may contain aliasing artifacts.

Recommendation:
Use PIL. Use antialias=True.

Clean-FID [Parmer et al., 2021]




Animal Faces-HQ dataset (AFHQ)

We release a new dataset of animal faces, Animal Faces-HQ (AFHQ), consisting of 15,000 high-quality images at 512x512 resolution. The
figure above shows example images of the AFHQ dataset. The dataset includes three domains of cat, dog, and wildlife, each providing
about 5000 images. By having multiple (three) domains and diverse images of various breeds per each domain, AFHQ sets a challenging
image-to-image translation problem. For each domain, we select 500 images as a test set and provide all remaining images as a training
set. To download the dataset, run the following command:

bash download.sh afhgq-dataset

[Update: 2021.07.01] We rebuild the original AFHQ dataset by using high-quality resize filtering (i.e., Lanczos resampling). Please see the
clean FID paper that brings attention to the unfortunate software library situation for downsampling. We thank to Alias-Free GAN authors for
their suggestion and contribution to the updated AFHQ dataset. If you use the updated dataset, we recommend to cite not only our paper
but also their paper.

The differences from the original dataset are as follows:

» We resize the images using Lanczos resampling instead of nearest neighbor downsampling.

» About 2% of the original images had been removed. So the set is now has 15803 images, whereas the original had 16130.

» Images are saved as PNG format to avoid compression artifacts. This makes the files bigger than the original, but it's worth it.



Iterative Gaussian (lowpass) pre-filtering

Gaussian 1/2

filter the image, then subsample

* Filter size should double for each %% size reduction. Why?
 How can we speed this up? Slide by Steve Seitz



A bar in the big
images is a hair
\\‘ on the zebra’s

_ nose; in smaller

images, a

¢ ! stripe; in the
/ smallest, the
animal’s nose

Figure from David Forsyth
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Gaussian pyramid construction

—>@

| o o ? o o |

. filter mask
0] 0] IT 0] 0] 0] Tl 0] 0]

Repeat

 Filter
« Subsample

Until minimum resolution reached
 can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Slide by Steve Seitz



What are they good for?

* Improve Search
— Search over translations
* Classic coarse-to-fine strategy

speedup + avoid local minimum (lower resolution -> fewer local
minimum)
— Search over scale
* E.g., find a face at different scales



Partial derivatives with convolution

*For 2D function f(x,y), the partial derivative is:

af(xay) Ihmf(x E,y)—f(x,y)

ax g—0 E

*For discrete data, we can approximate using finite differences:

of (x,y) _ f(xt1,3)~f(x.)
OX |

*To implement above as convolution, what would be the associated
filter?

Source: K. Grauman



Partial derivatives of an image

of (x,y)

OX

Which shows changes with respect to x?
81



Finite difference filters

Other approximations of derivative filters exist:

011
Prewitt: M, = H 011 s M, =

Sobel: M, =

Roberts: M, = (0] 1 . M, =

Source: K. Grauman
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Image gradient

 The gradient of an image: Vf — [gf gf]
x’ dy

vf=[2.0] T L vr=[35
= .

The gradient points in the direction of most rapid increase in intensity

* How does this direction relate to the direction of the edge?

The gradient direction is given by § = tan—1! (af/af)

The edge strength is given by the gradient magnitude
2 2
VA= /(D% + ()

Source: Steve Seitz



Image Gradient

84



Effects of noise

Consider a single row or column of the image

— Plotting intensity as a function of position gives a signal

I I I I I I I I I

F@YL
e

| | | ] | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f ()

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S. Seitz



Solution: smooth first

Sigma = 50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0Q
Kernel

*
0Q
Convolution

d
g(f*g)

Differentiation

0 200 400 600 800 1000 1200 1400 1600 1800 2000

» To find edges, look for peaks in di(f*g)
X

Source: S. Seitz
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Derivative theorem of convolution

* This saves us one operation:  (hx f) = (Lh) x f

Sigma = 50

...................................................

Signal

.....................................................

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

..............................................................................................

S8
>
Kernel

| | | | | l I l I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
QO
Fo
~
N’
>
~~
Convolution

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000




Derivative of Gaussian filter
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Derivative of Gaussian filter

015

x-direction y-direction

39



Practical matters

 What about near the edge?

— the filter window falls off the edge of the image

— need to extrapolate r - F

— methods:

e clip filter (black)
e wrap around

* copy edge
* reflect across edge

Boundary artifacts in deep image synthesis
aﬁ} Try different padding choices.
Try reflected padding first. Source: S. Marschner




Thank You!

16-726, Spring 2023
https://learning-image-synthesis.github.io/sp23/
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https://learning-image-synthesis.github.io/sp23/

