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Point Processing and Image Filtering
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What is an Image?
• We can think of an image as a function, f, from R2 to R:

– f( x, y ) gives the intensity at position ( x, y ) 
– Realistically, we expect the image only to be defined over a rectangle, 

with a finite range.
• A color image is just three functions pasted together.  We can write 

this as a “vector-valued” function: 
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Many slides are from Alyosha Efros, who also adopted some of them from other great people. 2



What is an Image?

Single channel grayscale image f( x, y ) 
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What is an Image?
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RGB image © A.A. Efros BGR version

• Common bugs: a function call requires BGR (RGB), you feed RGB (BGR)
• The same applies to display/visualization/save function.
• The crazy thing about deep network: the function calls still work. (e.g., 

recognize car and building in the image). 4



Problem: Dynamic Range
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Long Exposure
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Short Exposure
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Basic Point Processing: Enhancement

Power-law transformations
𝑐 ⋅ 𝑓 𝑥, 𝑦 !
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Basic Point Processing
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Basic Point Processing

Negative

Log
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Contrast Stretching
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Learning Mapping functions
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Image Histograms

Cumulative Histograms

𝑇(𝑓(𝑥, 𝑦))
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Histogram Equalization

credit @ Zefram
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Goal: match input image’s CDF to a 
uniform distribution’s CDF.
CDF: cumulative distribution function
Parameters: a lookup table of 256 values   



Color Transfer [Reinhard, et al, 2001]

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between 
Images. IEEE Computer Graphics and Applications, 21(5), pp. 34–41. September 2001. 

Method: Adjust the mean and standard derivation for each channel 
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http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476


Limitations of Point Processing
Q: What happens if I reshuffle all pixels within 
the image?

A: It’s histogram won’t change.  No histogram  
statistics will be affected…
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Solution: only transfer across shared regions

NRDC: Non-Rigid Dense Correspondence with Applications for Image Enhancement
HaCohen et al., SIGGRAPH 2011.
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Reference Input Matched regions Color mapping Result

A more general idea: transfer color from sky to sky, mountain to mountain, people to people



Limitations of Point Processing
• Q: What if I want to replace the sky in my 

image

• A: point processing cannot create new 
structure/texture/object. But Why?
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Sampling and Reconstruction
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Sampled Representations
• How to store and compute with continuous functions?
• Common scheme for representation: samples

– write down the function’s values at many points
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Reconstruction
• Making samples back into a continuous function

– for output (need realizable method)
– for analysis or processing (need mathematical method)
– amounts to “guessing” what the function did in between
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1D Example: Audio

low high
frequencies 23



Sampling in Digital Audio
• Recording: sound to analog to samples to disc
• Playback: disc to samples to analog to sound again

– how can we be sure we are filling in the gaps correctly?
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Sampling and Reconstruction
• Simple example: a sign wave
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Undersampling
• What if we “missed” things between the samples?
• Simple example: undersampling a sine wave

– unsurprising result: information is lost
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Undersampling
• What if we “missed” things between the samples?
• Simple example: undersampling a sine wave

– unsurprising result: information is lost
– surprising result: indistinguishable from lower frequency
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Undersampling
• What if we “missed” things between the samples?
• Simple example: undersampling a sine wave

– unsurprising result: information is lost
– surprising result: indistinguishable from lower frequency
– also, was always indistinguishable from higher frequencies
– aliasing: signals “traveling in disguise” as other frequencies
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Aliasing in Videos

Slide by Steve Seitz
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Aliasing in Images
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Antialiasing
• What can we do about aliasing?

• Sample more often
– Join the Mega-Pixel craze of the photo industry
– But this can’t go on forever

• Make the signal less “wiggly” 
– Get rid of some high frequencies
– Will loose information
– But it’s better than aliasing
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Preventing Aliasing
• Introduce lowpass filters:

– remove high frequencies leaving only safe, low frequencies
– choose lowest frequency in reconstruction (disambiguate)
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Moving Average
• basic idea: define a new function by averaging over a sliding window
• a simple example to start off: smoothing
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Moving Average
• Can add weights to our moving average
• Weights […, 0, 1, 1, 1, 1, 1, 0, …]  / 5 
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Cross-correlation
• Let  𝐹 be the image,  𝐻 be the kernel (of size 2k+1 x 2k+1), and  𝐺 be the 

output image

• A “dot product” between local neighborhood and kernel for each pixel. 

• This is called a cross-correlation operation:
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2D Box Filter
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Image filtering
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Image filtering
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111

111

111

],[ ××h



What does it do?
• Replaces each pixel with an average 

of its neighborhood

• Achieve smoothing effect (remove 
sharp features) 111

111

111

Slide credit: David Lowe (UBC)
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2D Box Filter



Linear filters: Examples

Original

111
111
111

Blur (with a mean 
filter)

Source: D. Lowe

=
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Practice with Linear Filters

000
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000

Original

?

Source: D. Lowe
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Practice with Linear Filters

000
010
000

Original Filtered 
(no change)

Source: D. Lowe
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Practice with Linear Filters

000
100
000

Original

?

Source: D. Lowe
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Practice with Linear Filters

000
100
000

Original Shifted left
By 1 pixel

Source: D. Lowe
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Back to 2D Box Filter



Moving Average
• Can add weights to our moving average
• Weights […, 0, 1, 1, 1, 1, 1, 0, …]  / 5 
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Weighted Moving Average
• bell curve (gaussian-like) weights […, 1, 4, 6, 4, 1, …]
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Gaussian filtering
•A Gaussian kernel gives less weight to pixels further 
from the center of the window

•This kernel is an approximation of a Gaussian function:
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Slide by Steve Seitz 54



Mean vs. Gaussian Filtering

Slide by Steve Seitz 55



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5, s = 1

Slide credit: Christopher Rasmussen
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Gaussian filtering



Gaussian Kernel

• Standard deviation s: determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30 
kernel

σ = 5 with 30 x 30 
kernel
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Gaussian filters

= 30 pixels= 1 pixel = 5 pixels = 10 pixels
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Choosing kernel width
• Gaussian function has infinite support, but discrete filters use finite kernels

Source: K. Grauman
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Cross-correlation vs. Convolution
• cross-correlation:

• A convolution operation is a cross-correlation where the filter is flipped both horizontally and 
vertically before being applied to the image:

• It is written:  

• Convolution is commutative and associative

Slide by Steve Seitz 60



Convolution

Adapted from F. Durand
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Different DL libraries handle it differently. Some flips; some not. 
Be careful when you port Conv weights from one library to another.

Computer vision 101: most students fail to flip the kernel. 



Convolution is nice!
• Notation:  𝑏 = 𝑐 ∗ 𝑎
• Convolution is a multiplication-like operation

– Commutative: 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎
– Associative: 𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑎 ∗ 𝑏 ∗ 𝑐
– distributes over addition: 𝑎 ∗ 𝑏 + 𝑐 = 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐
– scalars factor out: 𝛼𝑎 ∗ 𝑏 = 𝑎 ∗ 𝛼𝑏 = 𝛼(𝑎 ∗ 𝑏)
– identity: unit impulse e = […, 0, 0, 1, 0, 0, …]: 𝑎 ∗ 𝑒 = 𝑎

• Conceptually no distinction between filter and signal
• Usefulness of associativity

– often apply several filters one after another: (((𝑎 ∗ 𝑏1) ∗ 𝑏2) ∗ 𝑏3)
– this is equivalent to applying one filter: 𝑎 ∗ (𝑏1 ∗ 𝑏2 ∗ 𝑏3)
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Gaussian and Convolution
• Removes “high-frequency” components from the image 

(low-pass filter)
• Convolution with self is another Gaussian

– Convolving twice with Gaussian kernel of width 
= convolving once with kernel of width  

Source: K. Grauman

* =
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Image half-sizing
This image is too big to
fit on the screen.  How
can we reduce it?

How to generate a half-
sized version?
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Image sub-sampling

Throw away every other row and 
column to create a 1/2 size image

- called image sub-sampling

1/4

1/8

Slide by Steve Seitz 65



1/4  (2x zoom) 1/8  (4x zoom)

Aliasing!  What do we do?

1/2

Slide by Steve Seitz

Image sub-sampling
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Sampling an image

Examples of GOOD sampling
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Undersampling

Examples of BAD sampling -> Aliasing
68



Gaussian (lowpass) pre-filtering

G 1/4

G 1/8

Gaussian 1/2

Solution:  filter the image, then subsample
• Filter size should double for each ½ size reduction.  Why?

Slide by Steve Seitz 69



Subsampling with Gaussian pre-filtering

G 1/4 G 1/8Gaussian 1/2

Slide by Steve Seitz 70



Compare with...

1/4  (2x zoom) 1/8  (4x zoom)1/2

Slide by Steve Seitz
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More Gaussian pre-filtering
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Aliasing in Deep Learning

73

More and more neural networks (e.g., StyleGAN2, StyleGAN3) use anti-aliasing layers
See Zhang. ICML 2019. “Making Convolutional Networks Shift-Invariant Again”



74
Clean-FID [Parmer et al., 2021]

• Many  deep learning & computer vision 
libraries fail to pre-filter images correctly 
before downsampling. They use a fixed 
filter size for different resizing ratios. 

• If you use them to resize your images, 
your results may contain aliasing artifacts. 

• Recommendation: 
Use PIL. Use antialias=True. 

Aliasing in Deep Learning
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Iterative Gaussian (lowpass) pre-filtering

G 1/4

G 1/8

Gaussian 1/2

filter the image, then subsample
• Filter size should double for each ½ size reduction.  Why?
• How can we speed this up? Slide by Steve Seitz76



A bar in the big 
images is a hair 
on the zebra’s 
nose; in smaller 
images, a 
stripe; in the 
smallest, the 
animal’s nose

Figure from David Forsyth
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Gaussian pyramid construction

filter mask

Repeat
• Filter
• Subsample

Until minimum resolution reached 
• can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!
Slide by Steve Seitz
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What are they good for?
• Improve Search

– Search over translations
• Classic coarse-to-fine strategy 

speedup + avoid local minimum (lower resolution -> fewer local    
minimum) 

– Search over scale
• E.g., find a face at different scales
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Partial derivatives with convolution

•For 2D function f(x,y), the partial derivative is:

•For discrete data, we can approximate using finite differences:

•To implement above as convolution, what would be the associated 
filter?
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Source: K. Grauman 80



Partial derivatives of an image

Which shows changes with respect to x?
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Finite difference filters
• Other approximations of derivative filters exist:

Source: K. Grauman 82



The gradient points in the direction of most rapid increase in intensity

Image gradient
• The gradient of an image: 

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?
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Image Gradient
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Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz 85



Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d

*

f

g

f * g

)( gf
dx
d

*

Source: S. Seitz 86



Derivative theorem of convolution
• This saves us one operation:
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Derivative of Gaussian filter

* [1 -1]    = 
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Derivative of Gaussian filter

x-direction y-direction
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Practical matters
• What about near the edge?

– the filter window falls off the edge of the image
– need to extrapolate
– methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Source: S. Marschner 90

Boundary artifacts in deep image synthesis
Try different padding choices. 
Try reflected padding first.



Thank You!

16-726, Spring 2023
https://learning-image-synthesis.github.io/sp23/
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https://learning-image-synthesis.github.io/sp23/

